
A low memory, highly concurrent multigrid algorithm

Mark F. Adams∗

Abstract

We examine what is an efficient and scalable nonlinear solver, with low work
and memory complexity, for many classes of discretized partial differential equations
(PDEs) – matrix-free Full multigrid (FMG) with a Full Approximation Storage (FAS)
– in the context of current trends in computer architectures. Brandt proposed an
extremely low memory FMG-FAS algorithm in the 1970s that has several attractive
properties for reducing costs on modern – memory centric – machines and has not
been developed. This method, segmental refinement (SR), is very memory efficient,
with polylogarithmic memory complexity. We show that adapting SR to distributed
memory results in an algorithm with many attractive properties, including minimal
number of messages (one receive and one send per subdomain on each level), data
locality through “vertical” processing of standard multigrid, naturally adaptable to
dynamic programming models, and fusion of loops at each level in the FMG. Thus,
many standard techniques for developing the next generation of extreme scale equation
solvers natural drop of of the SR technique. This report develops a parallel general-
ization of the original sweeping technique and explores algorithmic details with the 1D
model problem. We show that FMG-FAS-SR can work as originally predicted, solving
systems accurately enough to maintain the convergence rate of the discretization with
one FMG iteration, and that the parallel algorithm provides a natural approach to
fully exploiting the available parallelism of FMG.

1 Motivation

Current trends in computer architecture such as non-rising, or even falling, clock rates,
saturated processor architectures in terms of pipelining, etc., the continued increase in
the number of transistors on a chip, requires that algorithms be highly concurrent and
asynchronous. Additionally, we have reached a point where the exponential growth in
power cost, which goes along with this continued growth of extreme-scale machines, is
becoming the prohibitive cost of extreme-scale computing. The desire to continue the
exponential growth of extreme-scale PDE simulations combined with an economic need to
keep the power budget of a machine down to say 25MW will tax the resources of computer

∗Applied Physics and Applied Mathematics Department, Columbia University,
mark.adams@columbia.edu

1

engineers and may require that we develop algorithms for radically different machine models
with respect to memory, energy and faults than what we have worked with in the past.
These changes, along with the continued need for mathematically scalable algorithms, as
we increase the fidelity of our simulations, is leading to the need to rethink our solver
algorithms for large scale PDE simulations. In particular, the powering and moving of
memory will become more central to the cost of PDE solves and the flop counts will
become less so. This paper aims to address the root cause of these future costs – memory
– by developing low memory and memory movement PDE solver algorithms that exploit
the mathematical structure of PDEs.

To rationally develop an algorithm, and certainly to analyze an algorithm, one needs
a machine model. Traditional complexity theory, essentially counting operations or flops,
has served this purpose well for high performance computing – it along with its extensions
to parallel complexity – has a well developed theory. Memory complexity is also useful and
to some extent serves as a proxy for memory movement complexity. While data locality,
to reduce memory traffic in the memory hierarchy, has been central to high performance
computing for decades it is difficult to incorporate memory movement into complexity
models directly and there is no consensus on any one approach though much work has
been done in this area [2, 3, 16, 4, 6]. The dearth of good cost models for future machines,
whose design is an active area of research and far from well understood, leads us to look at
the fundamental source of costs – memory – and place less emphasis on what has historically
been the primary measure of costs – flops.

Multigrid is an efficient solver method for many classes of problems; matrix-free Full
multigrid (FMG), with a Full Approximation Storage (FAS) for nonlinear problems, is an
very efficient algorithm for some classes of problems [18], with very low memory and work
complexity. Brandt proposed an extremely low memory FMG algorithm in the 1970s –
segmental refinement (SR)([8] §7.5; [9] §2.2; [11] §8.7; [12];[10]) – that does not require that
all of the data be stored at any one time. The resulting serial algorithm has a memory
complexity of logD+1 (N) [11] in D dimensions. This is done by reformulating the multigrid
algorithms from the view of the coarse grid, using the method of τ -corrections, so that in
effect of the fine grid is stored (compressed) on the coarse grid and can be recovered with a
special multigrid smoothing technique §3.1. Though the algorithm was originally proposed
as a low memory serial method that “sweeps” across the grid, and was developed as a
parallel algorithm by Brandt and Diskin [10]. This approach in effect allows for low memory
to be traded for concurrency – the coarse grids are stored explicitly and behave like standard
FMG, while the finer grids do not explicitly store the entire domain at any one time. This
results in higher flop to memory ratios than traditional multigrid methods because at
some level of granularity, say a uniform memory access partition, the same memory is used
repeatedly for many patches and thus many flops. Additionally, this algorithm requires that
the multigrid algorithm be processed “vertically”, which maximizes data reuse and locality,
as opposed to the traditional “horizontal” implementation approach where entire grids are
processed sequentially (ie, entire grids are first smoothed, residuals are calculated, and

2

then restricted to coarse grids, etc. §2.1). This algorithm is also inherently asynchronous
and could be naturally expressed in an asynchronous, task oriented programming language
although this is not neccessary. This algorithm has not been developed because it requires
more flops than the traditional approach and is more complex to engineer, but it has many
attractive properties on more memory centric computers.

This paper proceeds by providing some basic multigrid background in §2, the segmental
refinement algorithm is developed in §3 along with a parallel FMG-FAS-SR algorithm. We
apply this algorithm to a model problem in §5 and conclude in §6.

2 Multigrid Background

Multigrid is an effective method for solving systems of algebraic equations that arise from
discretized PDEs. Modern multigrid’s antecedents can be traced back to Southwell in the
1930s [17], and Fedorenko in the early 1960s [13]. Brandt developed multigrid’s modern
form in the 1970s – algorithms and analysis with work complexities equivalent to a few
residual calculations (work units), applied to complex domains, non-constant coefficients
problems and nonlinear problems [7]. A substantial body of literature, both theoretical and
experimental exists that proves and demonstrates the optimality of multigrid, having O(n)
work complexity and O(log(n)) parallel work complexity or computational depth for the
Laplacian [18]. Multigrid has been applied to a wide range of problems [11, 18], starting
with flow problems in the seminal paper by Brandt [7]. Multigrid as also been found to
useful as a nonlinear solver – used directly on the nonlinear system – with demonstrated
costs very similar to that of a linear multigrid solve ([7, 18] §5.3.3).

2.1 Multigrid V-cycle

Multigrid methods are motivated by the observation that a low resolution discretization of
an operator can capture modes or components of the error that are expensive to compute
directly on a highly resolved discretization. More generally, any poorly locally-determined
solution component has the potential to be resolved with a coarser representation. This
process can be applied recursively with a series of coarse grids, thereby requiring that each
grid resolve only the components of the error that it can solve efficiently. This process is
known as a V − cycle because of the shape of the graph in the standard representation
of these algorithms (see Figure 4). These coarse grids have fewer grid points, typically
about a factor of two in each dimension, such that the total amount of work in multigrid
iterations can be expressed as a geometric sum that converges to a small factor of the work
on the finest mesh. These concepts can be applied to problems with particles/atoms or
pixels as well as the traditional grid or cell variables considered here. Multigrid provides a
basic framework within which particular multigrid methods can be developed for particular
problems. This framework has proven to be an effective way to separate the near-field
from the far-field contributions to the solution of say elliptic operators – the coarse grid

3

captures the far-field contribution and the near-field is resolved with a local process called
a smoother.

The coarse grid space can be represented algebraically as the columns of the prolonga-
tion operator IhH , where h is the fine grid mesh spacing, H is the coarse grid mesh spacing.
The prolongation operator is used to map corrections to the solution from the coarse grid
to the fine grid. Residuals are mapped from the fine grid to the coarse grid with the re-
striction operator IHh ; IHh is often equal to the transpose of IhH . The coarse grid matrix can
be formed in one of two ways, either algebraically to form Galerkin (or variational) coarse
grids (LH ← IHh LhI

h
H) or, by creating a new operator on each coarse grid (if an explicit

coarse grid is available).

2.2 Nonlinear multigrid

The multigrid V –cycle can be adapted to a nonlinear method by observing that the coarse
grid residual equation can be written as

rH = LH(uH)− LH(ûH) = LH(ûH + eH)− LH(ûH), (1)

where u is the exact solution, ûH approximates IHh u
h, the full intended solution represented

on the coarse grid, hence the name “Full Approximation Scheme”, and e is the error. With
this, and an approximate solution on the fine grid ũh, the coarse grid equation can be
written as

LH
(
IHh ũh + eH

)
= LH

(
IHh ũh

)
+ IHh (fh − Lhũh) , (2)

and is solved approximately. After IHh ũh is subtracted from the IHh ũh + eH term the
correction is applied to the fine grid with the standard prolongation process. This method
is called Full Approximation Scheme (or Full Approximation Storage - FAS), because the
full solution is stored on each level and not just a residual correction. See Trottenberg for
more details [18].

Figure 1 shows the FAS multigrid V(ν1,ν2)-cycle and uses a nonlinear smoother u ←
S(L, u, f).

WithM coarse grids the preconditioner (solver) for LMuM = fM is u = FAS(LM , 0, fM)

2.3 Full Multigrid

An important variant on the V –cycle is the F–cycle or related full multigrid (FMG). The
multigrid F–cycle restricts the right hand side from the fine grid to the coarsest grid and
then applies a multigrid cycle, of some sort, at each level, starting with the coarsest level
and interpolating the solution to the next finest level as an initial solution for the next
V –cycle. A higher order interpolator between the level solves, Πh

H , is needed for optimal
efficiency of the FMG process but requires more data movement. An attractive property of

4

u =function FAS(Lk, uk, fk)
if k > 0

uk ← Sν1(Lk, uk, fk) – ν1 iterations of the (pre) smoother
rk ← fk − Lkuk
rk−1 ← Ik−1

k (rk) – restriction of residual to coarse grid

uk−1 ← Ik−1
k (uk) – restriction of solution to coarse grid

ck−1 ← FAS(Lk−1, uk−1, rk−1 + Lk−1uk−1) – recursive application
uk ← uk + Ikk−1(ck−1 − uk−1) – prolongation of coarse grid correction
uk ← Sν2(Lk, uk, fk) – ν2 iterations of the (post) smoother

else
uk ← L−1

0 f0 – exact solve of coarsest grid
return uk

Figure 1: FAS Multigrid V -cycle Algorithm

the F–cycle is that for some operators it has been proven that one F–cycle is sufficient to
reduce the error to the order of the truncation error, which is often all that is required [5]
([18] §3.2.2). Thus, the algebraic system can be solved to spatial truncation error accuracy
with a work complexity of a few work units, or residual calculations. Note, the parallel
complexity of an F–cycle does have an extra log(n) factor.

One can analyze the F–cycle with induction where the induction hypothesis is that the
algebraic error is some factor r of the truncation error (which is satisfied on the coarsest
grid where an accurate solver is required), and the standard assumption that the truncation
error is of the form O(hp), and that the solver on each level (eg, one V –cycle) reduces the
error by some factor Γ (which can be proven or measured experimentally) to derive an
equation that directly relates r to Γ. This allows the use of the desired ratio – any desired
ratio – of solution to truncation error to tune the solver at each level – see Adams for
the application of these ideas to compressible resistive magnetohydrodynamics where two
V -cycle were used as the level solver [1].

FMG starts with the coarse grid, and is more natural in an AMR context; it simply
omits the initial restriction of the residual to the coarse grid. Figure 2 shows the FMG
algorithm.

FMG-FAS multigrid is an efficient solver for some classes of problems and its application
to new classes of problems is an active area of research [1]. This method was developed in
the 1970s and was attractive because of its low memory requirements: only requiring the
field variables themselves, and because of its very low work complexity (as low as six work
units to solve to truncation error). After the profligate era of the 1980s to the 2000s, with
large amounts of uniform access memory available, low memory complexity algorithms
are attractive again as we move to memory centric cost models. Thus, FMG-FAS is an

5

u =function FMG
u0 ← FAS (L0, 0, f0) – exact solve of coarsest grid
for k=1:M

uk ← Πk
k−1uk−1 – FMG prolongation

uk ← FAS (Lk, uk, fk) – V-cycle
return uM

Figure 2: FMG-FAS algorithm

attractive solver algorithm for the anticipated machine models for exa-scale machines.

2.4 Segmental Refinement and PDE Compression

Looking at FAS from a two grid point of view we can rewrite the coarse grid Eq. 2 as

LH ûH = f̂H = LH
(
ÎHh ũ

h
)

+ IHh r
h = LH

(
ÎHh ũ

h
)

+ IHh

(
fh − Lhũh

)
, (3)

where ÎHh is some fine-to-coarse transfer which need not be the same as IHh (they are
in principle defined on different spaces), and ũh is the current solution on the fine grid.
Having obtained an approximate solution ũH from solving Eq. 3 we can write the fine grid
correction as

ũhNEW = ũh + IhH

(
ũH − ÎHh ũh

)
. (4)

Or use the solution directly:
ũhNEW = IhH ũ

H . (5)

Generally Eq. 5 is not preferred because it introduces interpolation error in the full solution,
and not just a correction, but it will be useful in the context of this work.

We can look at the FMG method from the dual point of view, that is from the view
of the coarse grid. Instead of looking at the coarse grid as an accelerator to the fine grid
convergence we look at a fine grid as a correction to the coarse grid problem. Eq. 3 can
be rewritten in the form:

LH ûH = fH + τHh , (6)

where the τ -correction is

τHh = LH
(
ÎHh ũ

h
)
− IHh

(
Lhũh

)
, (7)

and fH = IHh f
h. At convergence ûH = ÎHh u

h, hence τHh is the fine-to-coarse defect correc-
tion designed to make its solution coincide with the fine-grid solution. This observation,
along with the update of Eq. 5 allows for an FMG-FAS algorithm that need not store the
fine grids, but can compute them locally patch-by-patch. Brandt proposed the segmental

6

refinement method that exploits this property by “sweeping” through the grid refining one
segment at a time (§8.7 [11]).

Note, with the τ -correction, the coarse grid solution is equal to the fine grid solution
at the coarse grid points – this allows for the inexpensive computation of the solution
with a special relaxation method in the post smoothing leg of the V –cycle (§3.1). Thus,
this representation can be viewed as a compression technique that exploits the PDE and
multigrid method – PDE compression.

3 Algorithm

The duel view of FMG allows the τ -corrections to be computed on subdomains and the fine
grid data need not be retained in memory. In serial this allows only small parts of the fine
grids to be stored at any given time as the algorithm “sweeps” through the grids, computing
residuals, for the τ -corrections, and restricting them to the coarse grid. This algorithm
also has a high degree of concurrency – the low memory properties of the algorithm can
be “traded” for concurrency. Exploiting these observations requires looking at the data
dependencies of the FMG algorithm.

To fully exploit the available parallelism in the FMG algorithm we generalize the sweep-
ing process of the original algorithm by defining a regular “patch” i of cells uki , on grid k.
Define a partitioning of each grid into a non-overlapping set of patches Gk, and an exten-
sion of a patch ui by some number of cells as ūi – these are halo or buffer cells and they
allow for subdomain solves with inaccurate boundary conditions to be solved with the re-
quired accuracy of the smoother in the region of interest ui without communication. These
extended patches are conceptually similar to buffer regions that are used in algorithms to
reduce the number of messages at the expense of sending more data and redundant work
[15]. Define a solver or smoother S on an extended patch with non-homogenous boundary
conditions that returns an improved solution on the original – non-extended – patch of
data. This smoother is used as the coarse grid solver for notational convenience and it
must be accurate when used on the (entire) coarse grid. This smoother takes two extra
arguments – I ll+1 and ūli – for use in a Kaczmarz smoother (§3.1). The smoother assembles
these patch or “block” solve solutions additively, in a block Jacobi method, to increase the
degree of parallelism over the multiplicative method that is natural in serial. Assume that
the coarsest grid, grid u0, is composed of only one patch, again for notational convenience,
and that each subsequent grid is a simple refinement by a small integer refinement ratio
(ie, two or four). The size of the group of patches on each level is a factor of eight times
larger than the next coarser level in 3D in a non-AMR solve with a refinement ratio of two
(or 64 with a refinement ratio of 4). An AMR solve, with nested constant size patches,
would pruned these groups appropriately. Figure 3 shows a sketch of a parallel segmented
refinement algorithm assuming M coarse grids and the forcing function f has been suitably
interpolated to, or defined on, all levels.

7

function FMG-FAS-SR

u0 ← S
(
L0, u0, f0

)
for k = 0 : M − 1

for all uki ∈ Gk
1: ūk+1

i ← Πk+1
k uk – FMG prolongation

2: uk+1
i ← S

(
Lk+1, ūk+1

i , f̄k+1
i

)
3: uki ← Îkk+1ū

k+1
i – restrict solution

4: τki ← Lk
(
Îkk+1ū

k+1
i

)
− Ikk+1

(
Lk+1ūk+1

i

)
– data dependence for ūk+1

5: fki ← Ikk+1f
k+1
i + τki

for all uki ∈ Gk
uki ← S

(
Lk, ūki , f̄

k
i

)
for l = k : −1 : 1 – pre-smoothing leg of V-cycle

for all uli ∈ Gl
ul−1
i ← Î l−1

l ūli – restrict solution

τ l−1
i ← Ll−1

(
Î l−1
l ūli

)
− I l−1

l

(
Llūli

)
f l−1
i ← I l−1

l f li + τ l−1
i

ul−1
i ← S

(
Ll−1, ūl−1

i , f̄ l−1
i

)
for l = 0 : k – post-smoothing leg of V-cycle

for all uli ∈ Gl
if l = M − 1

ūl+1
i ← Πl+1

l ul – using Eq. 5 & HO prolongation

ul+1
i ← S

(
Ll+1, ūl+1

i , f̄ l+1
i , I ll+1, ū

l
i

)
– use CR

compute functional of ul+1
i – fine grid

else
ūl+1
i ← ūl+1

i + I l+1
l

(
ul − I ll+1u

l+1
)

– using Eq. 4

ul+1
i ← S

(
Ll+1, ūl+1

i , f̄ l+1
i

)
Figure 3: Segmented refinement FMG-FAS-SR algorithm (lines labeled 1-5 must be fused
to avoid the need to store uh)

The dependency graph of this algorithm is similar to a forest of oct-trees with additional
dependencies between neighboring trees. If simple averaging is used in restriction then
processing a coarse grid patch depends on the RD child patches (eg, an oct-tree), with
a refinement ratio of R in D dimensions. Higher order interpolation, which we use for
prolongation, adds edges in the data dependency graph between the trees.

Figure 4 shows the FMG cycle, the τ -corrections and the fine grid processing that

8

can be fused and processed without permanent storage. Note, that we use the higher

FMG interpolation

τ

τ

τ

τ

τ

τ

FMG interpolation

FMG interpolation

Figure 4: FMG cycle with τ corrections; dashed boxes show fused matrix free processing

order interpolation on the grids with full updates (SR levels), the finest level only in this
figure. This algorithm posses a high degree of concurrency, with, for instance, ten levels of
refinement resulting in over one billion way parallelism in 3D and R = 2.

3.1 Compatible Relaxation and Kaczmarz Smoother

The critical change that we have made to the mathematical algorithm, to avoid storage of
the finest grids, is the use of Eq. 5 to update the solution on the finest grids. This method
of not using a residual correction form, of using a full update, has the disadvantage that it
adds coarse grid interpolation error to the whole fine grid solution instead of only to a cor-
rection. We can ameliorate this problem by using stronger smoothers and using compatible
relaxation (CR). CR uses a distributive relaxation or Kaczmarz relaxation in combination
with a standard point-wise soother like Gauss-Seidel [14, 11]. Note, extra smoothing steps
may be required, using extra flops, but because we have taken care to insure good data
locality no additional memory movement is required, which is acceptable in the machine
model that we are optimizing for. We wish to maintain the approximation properties of
the coarse grid while allowing smoothing of the error on the fine grid. One approach for
maintaining the approximation properties of the coarse grid is to (approximately) constrain
the fine grid solution to solve

ũH = IHh ũ
h. (8)

Figure 5 shows the CR algorithm for our smoother on full update levels, that alternates
between a standard smoother and a Kaczmarz relaxation.

3.2 The Solution

A challenge of not explicitly storing the solution is the obvious problem of getting desired
data from the simulation. There are two basic methods for computing quantities of interest
in the segmented refinement approach: 1) collect a functional of the data as the solution is

9

function S(Lh, uh, fh, IHh , u
H)

P ← IHh
(
IHh

)T
for all j in patch pH

r ← uH − IHh (j, :)uh – residual
t← r/P (j, j) – scalar correction
uh ← uh + IhH(:, j)t – update (distributive)

standard smoother on patch uh

Figure 5: Kacmarz smoother on a patch

computed, including streaming the entire solution to a “file” for later processing (certainly
useful for small simulations and debugging) and 2) storing a coarse grid solution which can
be expanded or uncompressed efficiently with local processing (ie, PDE decompression) on
demand for analysis.

4 Data models and complexity

This section develops details data model for the parallel algorithm in §??.

5 Numerical Studies

We investigate the properties of the algorithms developed here with a 1D Laplacian with
homogenous Dirichlet boundary conditions and constant material coefficients. We use a
second order finite volume discretization, second order multigrid prolongation, fourth order
FMG interpolation (Π) and first order accurate restriction operators. The experiments are
run in Matlab. The Matlab source code is listed in §7. We do not use a data driven
(vertical) processing that is a potential result of the algorithm in Fig. 3, but our simple
(horizontal) processing of the algorithm does have the same semantics as our proposed
algorithm. The smoother does simulate the asynchronous algorithm in that it is additive,
a block Jacobi method, and so it is invariant to the order of processing of the blocks. Each
block has two non-overlapped cells, whose result is returned by the smoother, and two
or four halo cells on each side (except at boundaries of course). The solver within each
subdomain is a few iterations of Gauss-Seidel, or compatible relaxation on the SR (full
update) levels.

To ascertain the costs of the proposed algorithm we conduct convergence studies, plot-
ting the differential error |ũ− u|2 as a function of the number of cells. The discretization
method is second order accurate and so we wish to maintain second order accuracy in
our approximate solution with one FMG cycle. We consider on 0-3 levels of SR in each
study and look at the number of halo cells (two and four) and the number of Gauss-Seidel

10

iterations (one and two) in the subdomain solver of the Jacobi smoother. One application
of the outer Jacobi smoother is used at all times.

Figure 6 shows convergence studies for the two halo smoother subdomains. This data

16 32 64 128 256
10

−6

10
−5

10
−4

10
−3

10
−2

N cells

|u
 −

 ~
u
| 2

/|
u
| 2

Error of FMG vs. FMG-SR, w/ 2 halo & V(1,1) cyc

FMG

FMG−SR 1−grid

FMG−SR 2−grids

FMG−SR 3−grids

quadradic

16 32 64 128 256
10

−6

10
−5

10
−4

10
−3

10
−2

N cells

|u
 −

 ~
u
| 2

/|
u
| 2

Error of FMG vs. FMG-SR, w/ 2 halo & V(2,2) cyc

FMG

FMG−SR 1−grid

FMG−SR 2−grids

FMG−SR 3−grids

quadradic

Figure 6: Convergence study with two halo cells in subdomains solver; V(1,1) cycle (left);
V(2,2) cycle (right)

shows that truncation error accuracy (of the fine grid) is lost to some extent with three SR
levels and V (1, 1) cycles, but otherwise we observe good second order convergence.

Figure 7 shows convergence studies for the four halo smoother subdomains. This data

16 32 64 128
10

−5

10
−4

10
−3

10
−2

N cells

|u
 −

 ~
u
| 2

/|
u
| 2

Error of FMG vs. FMG-SR, w/ 4 halo & V(1,1) cyc

FMG

FMG−SR 1−grid

FMG−SR 2−grids

FMG−SR 3−grids

quadradic

16 32 64 128
10

−5

10
−4

10
−3

10
−2

N cells

|u
 −

 ~
u
| 2

/|
u
| 2

Error of FMG vs. FMG-SR, w/ 4 halo & V(2,2) cyc

FMG

FMG−SR 1−grid

FMG−SR 2−grids

FMG−SR 3−grids

quadradic

Figure 7: Convergence study with four halo cells in subdomains solver; V(1,1) cycle (left);
V(2,2) cycle (right)

11

shows that with four halo cells the accuracy is very good with all solver configurations.
For reference, Figure 8 shows convergence studies using a simple point-wise Gauss-

Seidel smoother (ie, the subdomain solver applied to the entire grid). This data shows

16 32 64 128
10

−5

10
−4

10
−3

10
−2

N cells

|u
 −

 ~
u
| 2

/|
u
| 2

Error of FMG vs. FMG-SR, w/ global smoother & V(1,1)

FMG

FMG−SR 1−grid

FMG−SR 2−grids

FMG−SR 3−grids

quadradic

16 32 64 128
10

−5

10
−4

10
−3

10
−2

N cells

|u
 −

 ~
u
| 2

/|
u
| 2

Error of FMG vs. FMG-SR, w/ global smoother & V(2,2)

FMG

FMG−SR 1−grid

FMG−SR 2−grids

FMG−SR 3−grids

quadradic

Figure 8: Convergence study with point-wise Gauss-Seidel smoothers; V(1,1) cycle (left);
V(2,2) cycle (right)

that the convergence results that we get, on this test problem, when using a standard
(multiplicative) smoother are a bit “cleaner” than that of the Jacobi smoothers in Figures
6 and 7.

6 Conclusions

We have developed mathematical understanding of a highly concurrent FMG-FAS multi-
grid algorithm based on the τ -correction and segmented refinement approach. The method
has the advantage of possessing very high levels of concurrency and is highly asynchronous.
This method also posses good data reuse properties because processing is confined to
patches where operations can be “fused”, obviating the need to even store the entire solu-
tion at any one time. We use overlapping subdomains which allows for accurate subdomain
solves in the smoothers without communication. These subdomain solves can be relatively
accurate because the data is local (eg, in cache or fast memory of some sort) with low
memory movement cost. Interesting areas of future research are applying these methods to
higher order discretizations, systems of PDEs, transient problems and hyperbolic problems,
in a parallel and in an asynchronous environment.

12

Acknowledgments

We would like to thank Achi Brandt for his generous guidance in developing these algo-
rithms, Richard Vuduc for help in understanding advanced machine cost models, Hans
Johansen for help with finite volume methods, and Jed Brown for many conversations on
this topic.

References

[1] M. F. Adams, R. Samtaney, and A. Brandt, Toward textbook multigrid efficiency
for fully implicit resistive magnetohydrodynamics, Journal of Computational Physics,
229 (2010), pp. 6208 – 6219.

[2] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir, A model for hierarchical
memory, in Proceedings of the nineteenth annual ACM Symposium on Theory of
Computing (STOC), 1987.

[3] A. Aggarwal and S. Vitter, Jeffrey, The input/output complexity of sorting
and related problems, Communications of the ACM, 31 (1988), pp. 1116–1127.

[4] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, Minimizing commu-
nication in linear algebra, Tech. Rep. UCB/EECS-2009-62, University of California,
Berkeley, CA, USA, Feb. 2009.

[5] R. Bank and T. Dupont, An optimal order process for solving finite element equa-
tions, Math. Comp., 36 (1981), pp. 35–51.

[6] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri, Low depth cache-oblivious
algorithms, in Proceedings of the 22nd ACM symposium on Parallelism in algorithms
and architectures - SPAA ’10, New York, New York, USA, June 2010, ACM Press,
p. 189.

[7] A. Brandt, Multi–level adaptive technique (MLAT) for fast numerical solution to
boundary value problems, in Proceedings of the Third International Conference on
Numerical Methods in Fluid Mechanics, H. Cabannes and R. Teman, eds., vol. 18 of
Lecture Notes in Physics, Berlin, 1973, Springer–Verlag, pp. 82–89.

[8] , Multi–level adaptive techniques (MLAT) for partial differential equations: ideas
and software, in Mathematical Software III, J. R. Rice, ed., Academic Press, New
York, 1977, pp. 277–318.

[9] , Multi–level adaptive techniques (MLAT) for singular–perturbation problems, in
Numerical Analysis of Singular Perturbation Problems, P. W. Hemker and J. J. H.
Miller, eds., Academic Press, New York, 1979, pp. 53–142.

13

[10] A. Brandt and B. Diskin, Multigrid solvers on decomposed domains, in Domain
Decomposition Methods in Science and Engineering: The Sixth International Confer-
ence on Domain Decomposition, vol. 157 of Contemporary Mathematics, Providence,
Rhode Island, 1994, American Mathematical Society, pp. 135–155.

[11] A. Brandt and O. E. Livne, Multigrid Techniques, Society for Industrial and Ap-
plied Mathematics, 2011.

[12] N. Dinar, Fast Methods for the Numerical Solution of Boundary Value Problems,
PhD thesis, Weizmann Institute of Science, Rehovot, Isreal, 1979.

[13] R. P. Fedorenko, A relaxation method for solving elliptic difference equations, Z.
Vycisl. Mat. i. Mat. Fiz., 1 (1961), pp. 922–927. Also in U.S.S.R. Comput. Math. and
Math. Phys., 1 (1962), pp. 1092–1096.

[14] S. Kaczmarz, Angenäherte auflösung von systemen linearer gleichungen, Bull. Acad.
Pol. Ci. Lett. A, 35 (1937), pp. 355–357.

[15] C. E. Leiserson, S. Rao, and S. Toledo, Efficient Out-of-Core Algorithms for
Linear Relaxation Using Blocking Covers, Journal of Computer and System Sciences,
54 (1997), pp. 332–344.

[16] J. E. Savage, Models of Computation: Exploring the power of computing, CC-3.0,
BY-NC-ND, electronic ed., 2008.

[17] R. V. Southwell, Relaxation Methods in Engineering Science, Oxford University
Press, Oxford, 1940.

[18] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic
Press, London, 2001.

7 Appendix

The data shown in this paper is generated with a Matlab code, shown here. Run ”conv(12)”
to do a convergence study with 12 levels (4096 cells on the finest level). The coarsest level
is at level 2, so there are actually nine multigrid levels when ten levels are requested.

function conv(M)

% conv: Run convergence test for fmg()

% Plot errors vs. N.

close all

set(0,’DefaultFigureWindowStyle’,’docked’)

lw = 1.5; fz = 18;

s = 4; s_N = 2^s; s_h = 1/s_N;

14

nmodes = 16;

for halo_type=1:3

for ns=1:2

qq = s_h^2;

for k = s:M

err_noRS(k)= fmg(k,0,2,0,ns,halo_type);

err_RS1(k) = fmg(k,1,2,0,ns,halo_type);

err_RS2(k) = fmg(k,2,2,0,ns,halo_type);

err_RS3(k) = fmg(k,3,2,0,ns,halo_type);

quad(k) = qq;

qq = qq/4;

end

figure

p=s:M;

p2 = 2.^p;

loglog(p2, err_noRS(4:M), ’kd--’,’linewidth’,lw), hold on

loglog(p2, err_RS1(4:M), ’bx-.’,’linewidth’,lw), hold on

loglog(p2, err_RS2(4:M), ’ro:’,’linewidth’,lw), hold on

loglog(p2, err_RS3(4:M), ’g*-’,’linewidth’,lw), hold on

loglog(p2, quad(4:M), ’m-’,’linewidth’,lw), hold on

set(gca,’XTick’,p2)

V = axis;

V(1) = s_N; V(2) = 2^M;

axis(V)

legend(’FMG’,’FMG-SR 1-grid’,’FMG-SR 2-grids’,’FMG-SR 3-grids’,’quadradic’)

ylabel(’|u - ~u|_2/|u|_2’,’fontsize’,fz);

xlabel(’N cells’,’fontsize’,fz);

if halo_type==3,

title([’Error of FMG vs. FMG-SR, w/ global smoother \& V(’,num2str(ns),’,’,num2str(ns),’) cycles’],’fontsize’,fz,’Interpreter’,’latex’)

grid

print(gcf, ’-djpeg100’, [’conv_global_bc_’,num2str(ns),’smooth’])

print(gcf, ’-depsc’, [’conv_global_bc_’,num2str(ns),’smooth’])

else

title([’Error of FMG vs. FMG-SR, w/ ’,num2str(2*halo_type),’ halo \& V(’,num2str(ns),’,’,num2str(ns),’) cycles’],’fontsize’,fz,’Interpreter’,’latex’)

grid

print(gcf, ’-djpeg100’, [’conv_’,num2str(2*halo_type),’bc_’,num2str(ns),’smooth’])

print(gcf, ’-depsc’, [’conv_’,num2str(2*halo_type),’bc_’,num2str(ns),’smooth’])

end

end

end

15

function [error] = fmg(M, nRS, M0, pflag, ns, halo_type, nmodes)

% fmg: fmg-fas with segmetnted refinement.

% M - number of coarse grids.

% M0 - level of coarsest grid.

if nargin < 4, pflag = 1; end

if nargin < 3, M0 = 2; end

if nargin < 2, nRS = 0; end

if nargin < 1, M = 5; end

NN = 2^M, h_M = 1/NN;

if nargin < 7, nmodes = NN/16; end

if nargin < 5, ns = 1; end

if nargin < 6, halo_type = 2; end

set(0,’DefaultFigureWindowStyle’,’docked’)

uu = cell(1,M);

rhs_orig = cell(1,M);

N = NN;

for k=M:-1:M0

N_lev(k) = N; N = N/2;

end

%

[L rhs ext Prol Rest RRt Prol_FMG] = getops(M, nRS, M0, nmodes);

%

% FAS-FMG-SR w/ tau correction

%

prt = 0;

% FMG up to finest grid M

uu{M0} = smooth(L{M0}, 0, rhs{M0}, 1, M0); % coarsest grid solve

if prt, coarse_smoothing_error_infnorm = [M0 N_lev(M0) norm(uu{M0}-ext{M0},inf) norm(rhs{M0}-L{M0}*uu{M0},inf)], end

for k=M0:M-1

uu{k+1} = Prol_FMG{k} * uu{k}; % FMG prol.

% presmooth fines grid at this level

if prt, pre_v_cycle_err_res_inf = [k+1 N_lev(k+1) norm(uu{k+1}-ext{k+1},inf) norm(rhs{k+1}-L{k+1}*uu{k+1},inf)], end

rhs_orig{k+1} = rhs{k+1};

uu{k+1} = smooth(L{k+1}, uu{k+1}, rhs{k+1}, ns, M0, 0, 0, 0, halo_type);

% pre smoothing + coarse grid

for m=k:-1:M0

uu{m} = Rest{m}*uu{m+1}; % initial guess for coarse grid

rhs{m} = Rest{m}*rhs{m+1} + L{m}*uu{m} - Rest{m}*L{m+1}*uu{m+1};

uu{m} = smooth(L{m}, uu{m}, rhs{m}, ns, M0, 0, 0, 0, halo_type);

16

%if prt, pre_smoothing_error_infnorm = [m N_lev(m) norm(uu{m}-ext{m},inf) norm(rhs{m}-L{m}*uu{m},inf)], end

end

% post smoothing

for m=M0:k

if m < M-nRS,

uu{m+1} = uu{m+1} + Prol{m}*(uu{m} - Rest{m}*uu{m+1});

uu{m+1} = smooth(L{m+1}, uu{m+1}, rhs{m+1}, ns, M0, 0, 0, 0, halo_type);

else

uu{m+1} = Prol_FMG{m}*uu{m};

ns2 = ns; %[2*(M-m) N_lev(m+1)], % (m-M+5)

uu{m+1} = smooth(L{m+1}, uu{m+1}, rhs{m+1}, ns2(1), M0, uu{m}, diag(RRt{m}), Rest{m}, halo_type);

%uu{m+1} = smooth(L{m+1}, uu{m+1}, rhs_orig{m+1}, ns2(1), M0, uu{m}, diag(RRt{m}), Rest{m});

end

%if prt, post_smoothing_error_infnorm = [m+1 N_lev(m+1) norm(uu{m+1}-ext{m+1},inf) norm(rhs{m+1}-L{m+1}*uu{m+1},inf)], end

end

if prt, post_v_cycle_err_res_inf = [k+1 N_lev(k+1) norm(uu{k+1}-ext{k+1},inf) norm(rhs{k+1}-L{k+1}*uu{k+1},inf)], end

end

%res_red = norm(rhs{M}-L{M}*uu{M})/norm(rhs{M}),

%err_red = norm(uu{M}-ext{M})/norm(ext{M}),

%figure

%plot(rhs{M}-L{M}*uu{M},’b:*’), hold on,

%plot(rhs{M},’r:o’), hold on,

%pause

% plot & error

if pflag,

close all

figure

xx = h_M/2 + h_M*(0:NN-1);

plot(xx, uu{M}, ’r*--’), hold on

plot(xx, rhs{M}, ’go--’), hold on

plot(xx, ext{M}, ’bx-’), hold on

plot(xx, abs(ext{M}-uu{M}), ’md-’), hold on

axis([0 1 0 1.1*max(uu{M})])

legend(’result’,’b’,’x’,’error’)

end

error = norm(ext{M}-uu{M},2)/norm(ext{M},2);

end

function [L rhs ext Prol Rest RRt Prol_FMG] = getops(M, nRS, M0, nmodes)

% getops: create opertors for FMG.

17

% 1D 2nd order finite volume discretization of Laplacian with Dirichlet

% boundary conditions. First order restriction, 2d oreder prolongation

% and 4th order FMG interpolation.

NN = 2^M; h_M = 1/NN;

%

% Form restriction and prolongation ops

%

Prol = cell(1,M-1);

Rest = cell(1,M-1);

RRt = cell(1,M-1);

n=2^M0; m=2*n;

for k=M0:M-1

P = zeros(m,n); P0 = zeros(m,n);

P(2,1) = 3; P(m-1,n) = 3;

P(1,1) = 2; P(m,n) = 2;

P0(2,1) = 1; P0(m-1,n) = 1;

P0(1,1) = 1; P0(m,n) = 1;

if m > 2,

P(m-2,n) = 1; P(3,1) = 1;

end

for j=2:n-1

jj = (j-2)*2 + 2;

pp = jj:jj+3;

P(pp,j) = [1 3 3 1];

pp = jj+1:jj+2;

P0(pp,j) = [1 1];

end

Prol{k} = sparse(0.25*P);

%Rest{k} = 0.125*P’;

Rest{k} = sparse(0.5*P0’);

RRt{k} = Rest{k}*Rest{k}’;

m = m*2; n = n*2;

end

%

% Form L & Prol_H

%

L = cell(1,M);

Prol_FMG = cell(1,M-1);

N = NN; h = h_M;

for k=M:-1:M0

18

A = 2*eye(N) - diag(ones(N-1,1),1) - diag(ones(N-1,1),-1);

A(1,1) = 3;

A(N,N) = 3;

L{k} = sparse(A*(1/h)^2);

if k > M0,

%Prol_H{k-1} = Prol{k-1};

P = zeros(N,N/2);

P(1,1) = 70; P(1,2) = -2;

P(2,1) = 112; P(2,2) = 35; P(2,3) = -5;

P(3,1) = 40; P(3,2) = 105; P(3,3) = -7;

P(4,1) = -7; P(4,2) = 105; P(4,3) = 35; P(4,4) = -5;

%

for i=5:2:N-4

j = (i-1)/2 + 1;

P(i,j-2) = -5; P(i,j-1) = 35; P(i,j) = 105; P(i,j+1) = -7;

P(i+1,j-1) = -7; P(i+1,j) = 105; P(i+1,j+1) = 35; P(i+1,j+2) = -5;

end

%

j = N/2;

P(N,j) = 70; P(N,j-1) = -2;

P(N-1,j) = 112; P(N-1,j-1) = 35; P(N-1,j-2) = -5;

P(N-2,j) = 40; P(N-2,j-1) = 105; P(N-2,j-2) = -7;

P(N-3,j) = -7; P(N-3,j-1) = 105; P(N-3,j-2) = 35; P(N-3,j-3) = -5;

%

Prol_FMG{k-1} = (1/128)*sparse(P);

end

N = N/2; h = h * 2;

end

%

% Form f

%

rhs = cell(1,M);

ext = cell(1,M);

N = NN; h = h_M;

x = h/2 + h*(0:N-1);

rhs{M} = 0*x’; ext{M} = 0*x’;

for j=1:2:nmodes,

rhs{M} = rhs{M} + (1/j)*sin(j*pi*x)’;

ext{M} = ext{M} + (1/j)*sin(j*pi*x)’/(j*pi)^2;

end

f = rhs{M};

19

e = ext{M};

%figure

%plot(x,(ext{M} - L{M}\rhs{M})./ext{M},’o--’), hold on

%plot(x,ext{M},’or--’), hold on

for k=M-1:-1:M0

f = Rest{k} * f;

rhs{k} = f;

e = Rest{k} * e;

ext{k} = e;

%N = N/2; h = h * 2;

%x = h/2 + h*(0:N-1);

%plot(x,(ext{k} - L{k}\rhs{k})./ext{k},’*-.’), hold on

%plot(x,ext{k},’*k-.’), hold on

end

%print(gcf, ’-djpeg100’, ’disc_error’), grid, pause

end

function u_out = smooth(L, u_0, f, ns, M0, u_H, RRt, R, halo_type, a_p1, a_p2)

% smooth: SR smoother

%

[N x] = size(L);

omega = 1.;

sqrt2i = 1/sqrt(2);

if N == 2^M0,

% coarse grid solve

u_out = L \ f;

else

if nargin < 10,

% whole level, additive Schwarz

if halo_type==1,

u_out = zeros(N, 1);

p1 = 1:2;

p2 = 1:4;

u_out(p1) = smooth(L, u_0, f, ns, M0, u_H, RRt, R, halo_type, p1, p2);

for ii=6:2:N,

p1 = (ii-3):(ii-2);

p2 = (ii-5):ii;

u_out(p1) = smooth(L, u_0, f, ns, M0, u_H, RRt, R, halo_type, p1, p2);

end

p1 = (N-1):N;

p2 = (N-3):N;

20

u_out(p1) = smooth(L, u_0, f, ns, M0, u_H, RRt, R, halo_type, p1, p2);

elseif halo_type==2,

u_out = zeros(N, 1);

p1 = 1:2;

p2 = 1:6;

u_out(p1) = smooth(L, u_0, f, ns, M0, u_H, RRt, R, halo_type, p1, p2);

p1 = 3:4;

p2 = 1:8;

u_out(p1) = smooth(L, u_0, f, ns, M0, u_H, RRt, R, halo_type, p1, p2);

for ii=10:2:N,

p1 = (ii-5):(ii-4);

p2 = (ii-9):ii;

u_out(p1) = smooth(L, u_0, f, ns, M0, u_H, RRt, R, halo_type, p1, p2);

end

p1 = (N-3):(N-2);

p2 = (N-7):N;

u_out(p1) = smooth(L, u_0, f, ns, M0, u_H, RRt, R, halo_type, p1, p2);

p1 = (N-1):N;

p2 = (N-5):N;

u_out(p1) = smooth(L, u_0, f, ns, M0, u_H, RRt, R, halo_type, p1, p2);

else

% whole level, G-S

u_out = zeros(N, 1);

p1 = 1:N; p2 = p1;

u_out(p1) = smooth(L, u_0, f, ns, M0, u_H, RRt, R, halo_type, p1, p2);

end

else

% one subdomain

for k = 1:ns,

% distributed (Kaczmarz) relaxation

[n1 n2] = size(RRt);

if n1+n2 > 2,

% setup coarse grid iterator

if a_p2(1) < a_p2(2), inc = 2; off = 0; else inc = -2; off = 1; end

[x n] = size(a_p2);

% distributed (Kacmarz) relaxation

for ii=(a_p2(1):inc:a_p2(n)) - off

jj = (ii-1)/2 + 1; % H index

r = u_H(jj) - R(jj,:)*u_0;

t = r / RRt(jj); % update for RR’ y = x^H

u_0 = u_0 + R(jj,:)’ * t; % update x^h

21

end

%error = [k size(a_p2) norm(u_H - R*u_0)]

end

% normal smoothing

for ii=a_p2

u_0(ii) = u_0(ii) + omega * (f(ii) - L(ii,:)*u_0) / L(ii,ii);

end

% symmetrize

a_p2 = fliplr(a_p2);

end

u_out = u_0(a_p1);

end

end

end

22

